ord-axiomata
When using Data.Type.Ord
, there are many facts one intuitively expects to hold that GHC is not clever enough to infer.
We rectify this situation with TotalOrder
and related typeclasses that not only enable comparison of singletons, but also provide axiomata allowing one to safely prove such facts to GHC.
Axiomata
Due to GHC/Haskell specific details and the expression of equivalence and ordering in terms of Compare
, the phrasing of the axiomata is a little different than usual—many are reduced to consistency conditions with ~
and the following definitions.
\begin{alignat*}{3}
&a < b &&\iff &&\mathrm{Compare} \kern3pt a \kern3pt b \sim \mathrm{LT} \\
&a = b &&\iff &&\mathrm{Compare} \kern3pt a \kern3pt b \sim \mathrm{EQ} \\
&a > b &&\iff &&\mathrm{Compare} \kern3pt a \kern3pt b \sim \mathrm{GT} \\
&a \leq b &&\iff &&a < b \lor a = b \\
&a \neq b &&\iff &&a < b \lor a > b \\
&a \geq b &&\iff &&a = b \lor a > b
\end{alignat*}
Equivalence
\begin{alignat*}{3}
&\text{decidability} \quad\quad\quad && \forall a, b.
\kern6pt && a = b \lor a \neq b \\
&\text{reflexivity} \quad\quad\quad && \forall a, b.
\kern6pt && a \sim b \implies a = b \\
&\text{substitutability} \quad\quad\quad && \forall a, b.
\kern6pt && a = b \implies a \sim b \\
\end{alignat*}
Total Ordering
\begin{alignat*}{3}
&\text{connectivity} \quad\quad\quad && \forall a, b.
\kern6pt && a < b \lor a = b \lor a > b \\
&\text{anti-symmetry of $\lt$/$\gt$} \quad\quad\quad && \forall a, b.
\kern6pt && a < b \iff b > a \\
&\text{transitivity of $\leq$} \quad\quad\quad && \forall a, b, c.
\kern6pt && a \leq b \land b \leq c \implies a \leq c \\
\end{alignat*}
Bounding
\begin{alignat*}{3}
&\text{bounded below} \quad\quad\quad && \exists b_l \forall a.
\kern6pt && b_l \leq a \\
&\text{bounded above} \quad\quad\quad && \exists b_u \forall a.
\kern6pt && a \leq b_u \\
\end{alignat*}
Lemmata
With the above at our disposal, we can prove general, reusable facts.
Equivalence
\begin{alignat*}{3}
&\text{symmetry of $=$} \quad\quad\quad && \forall a, b.
\kern6pt && a = b \iff b = a \\
&\text{symmetry of $\neq$} \quad\quad\quad && \forall a, b.
\kern6pt && a \neq b \iff b \neq a \\
&\text{transitivity of $=$} \quad\quad\quad && \forall a, b, c.
\kern6pt && a = b \land b = c \implies a = c \\
\end{alignat*}
Ordering
Reflection
\begin{alignat*}{3}
&\text{anti-symmetry of $\leq$/$\geq$} \quad\quad\quad && \forall a, b.
\kern6pt && a \leq b \iff b \geq a
\end{alignat*}
Transitivity
\begin{alignat*}{3}
&\text{transitivity of $\lt$} \quad\quad\quad && \forall a, b, c.
\kern6pt && a \lt b \land b \lt c \implies a \lt c \\
&\text{transitivity of $\gt$} \quad\quad\quad && \forall a, b, c.
\kern6pt && a \gt b \land b \gt c \implies a \gt c \\
&\text{transitivity of $\geq$} \quad\quad\quad && \forall a, b, c.
\kern6pt && a \geq b \land b \geq c \implies a \geq c \\
\end{alignat*}
Properties of Minimum
\begin{alignat*}{3}
&\text{deflationary} \quad\quad\quad && \forall a, b.
\kern6pt && \mathrm{min} \kern3pt a \kern3pt b \leq a, b \\
&\text{monotonicity} \quad\quad\quad && \forall a, b, c, d.
\kern6pt && a \leq c \land b \leq d
\implies \mathrm{min} \kern3pt a \kern3pt b
\leq \mathrm{min} \kern3pt c \kern3pt d \\
&\text{symmetry} \quad\quad\quad && \forall a, b.
\kern6pt && \mathrm{min} \kern3pt a \kern3pt b
\sim \mathrm{min} \kern3pt b \kern3pt a \\
\end{alignat*}
Properties of Maximum
\begin{alignat*}{3}
&\text{inflationary} \quad\quad\quad && \forall a, b.
\kern6pt && a, b \leq \mathrm{max} \kern3pt a \kern3pt b \\
&\text{monotonicity} \quad\quad\quad && \forall a, b, c, d.
\kern6pt && a \leq c \land b \leq d
\implies \mathrm{max} \kern3pt a \kern3pt b
\leq \mathrm{max} \kern3pt c \kern3pt d \\
&\text{symmetry} \quad\quad\quad && \forall a, b.
\kern6pt && \mathrm{max} \kern3pt a \kern3pt b
\sim \mathrm{max} \kern3pt b \kern3pt a \\
\end{alignat*}